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ABSTRACT

It is well known that the Rayleigh approximation to extinction, scattering and

absorption efficiencies for spheres is limited to small size parameters, x, and small values

of Imtx, where m is the complex index of refraction. It is also known that the Thomnson

approximation to these same efficiencies is valid for small x and m = cc. We have established

an exact transform of the Mie coefficients, for both spheres and infinite cylinders, that

removes the m related restrictions of the Rayleigh and Thomson approximations. The

resulting series for spheres and infinite cylinders are valid for all m and small z. This

transform can also be applied in an approximate form to spheroids.

RtSUME

L'approximation de Rayleigh pour l'efficacit6 d'extinction, de diffusion et

d'absorption des spheres est limitde aux petites valeurs du parambtre de taille, x, et aux

petites valeurs de Imjx, m 6tant l'indice de rdfraction complexe. L'approximation de Thom-

son est de son cot6 valide pour les petites valeurs de x et m = 00. Nous avons 6tabli une

transformation exacte des coefficients de Mie poar les sphbres et les cylindres infinis qui

fait disparaitre ces restrictions sur la valeur de m dans les approximations de Thomson

et Rayleigh. La sdrie qui en r6sulte est valide pour tout m, x demeurant petit. Cette

ti, .:isformation peut aussi s'appliquer aux sph~roi'des mais d'une manibre approximative.
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EXECUTIVE SUMMARY

Any complex military system or scenario that involves electro-optical devices

requires understanding the propagation of radiation through natural aerosols and

smokes/obscurants. Given present and future electro-optical capabilities of fire-control sys-

tems, full spectrum obscurants will be required as effective countermeasures. 4, i6 well

known that spherical particles obscure efficiently in the visible region of the spectrumn It

is also well known that, in the near and far infrarcd, as well as the microwave region of

the spectrum, the use of nonspherical particles is mandatory. The most efficient ubscurants

generally require that the obscuring particles be made from highly refractive materials (for

example, metals).

This work considers the calculation of the extinction efficiency from small, non-

spherical particles (by small particles we mean that the particle size is small relative to
the wavelength). It has two main objectives. The first is to extend the calculation to

previously inaccessible parameter domains and the second is to significantly reduce the

computational burden. This would allow the full exploration of the effects of these particles

on the performance of obscurants and on electromagnetic propagation.

To date the theoretical exploration of the effect of these types of particles on the

performance of obscurants has been either extremely restrictive or prohibitively expensive.

This work partially overcomes these restrictions and will aid in the design and performance

analysis of potential new obscurants using high-refractivity materials.

The electromagnetic extinction through rain, carbon smoke or other nonspherical

atmospheric aerosols can also be evaluated by this approach. This is an essential first step

in the evaluation of the performance of all electro-optical systems.

The long-term goal of this work is to alleviate the remaining constraints in the

theoretical consideration of nonspherical aerosols and obscurants of both natural and ar-

tificial origin. This will not only aid in finding better obscurants but also in the possible

identification and remote classification of such aerosols.
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1.0 INTROI)UCTI0N

If a particle is geometrically and optically small enough, then simple formulae can

usually be found for the extinction and scattering efficiencies as well as the phase function.

Such approximate formulae are usually called the Rayleigh approximation (Refs. 1 and 2). If

the particle is still geometrically small but optically very large, the Thomson approximation

results (Ref. 3). Often, however, a geometrically small particle may be neither optically

small nor very large. This creates a gap that has not been completely filled.

In this report we first demonstrate a transform that bridges this gap 1.)r spheres and

infinite cylinders. If this transform of the Mie coefficients and their series expansion were

limited to spheres and infinite cylinders, it would have only theoretical interest. However,

this transform generalizes, in an approximate form, to other convex bodies when a Rayleigh

or Thomson-like series can be obtained. These can sometimes be obtained by a method

given by Stevenson in 1953 (Ref. 4). Series are available in this document for ellipsoids

(which include spheroids). We will present results of a comparison between the newly

obtained series and the exact codes for spheres and spheroids.

This work was performed at DREV between March and October 1991 under PSC

32A, EO/IR Protection of Land Vehicles.
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2.0 THEORY

We will first derive the general expansion of the Mie coefficients for small size

parameters x, and show how the Rayleigh and Thomson expressions result.

2.1 Spheres

Starting with the definition (Ref. 2) of Q,,, and Q,,t the scattering and extinction

efficiencies, respectively, we have

2 00
':= - (2n + 1){fIa.I 2 + Ib, 2I),

n=1

and

2 00
Qert = -, E(2n + 1){P,.(R,. + bn)}, [2]

n=1

where an and bn are the external field Mie coefficients. These Mie coefficients are given by

an = O',(VrX)n(X) - V•¢.(,fCY) n(X) [3]
VrU-0' VC- X) - 7VC n (V'(7iA ) ('(X)

and

bn V(= On' +(V("X) 0b.( ) - '4i'n(v-fix) i4(x) O41
V= O' (v4 T) -(n) - -7 •z(vr )¢(X ) ' (4]

where E and p are the relative dielectric constant and the relative magnetic permeability,

tp is the Riccati-Bessel function of the first kind and (,n is the Riccati-Bessel function of

the third kind. Note that the b, coefficients are symmetrical with the an coefficients upon

substitution of c for p and vice versa. Hence, we need only discusR an in detail.
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Expanding a, and a2 in small X we obtain

- - ~ 6c +(4+(,U 2 X 63x• +2 5 (t +2)ý +9 (+2,

1 4(4t12 + 3 (9p 2 + 35p - 25) - C2(70/ + 150) + 200(2c-1))X7+ 5]
+j-j• ( + 2)z ) ".,

a2 2 - +. [6]
15 k2(+3/

b= an, (- "P.

Expansions for higher order coefficients can also be derived. The classic Rayleigh approxi-

mation gives (p = 1, m 2 = 'EA),

= 2. (m -• -) 1 2 ((mn2 - 1)(m2 - 2) 5S4(m2-1)2X6

1 ((m2- 1)(m 6 +20m 4 -2200r'+200)X+ T7-g (-M2• +.. 2)3
1 .

b, = •-•(m 2 - 1)x5 +.... [8]

The Thompson approximation gives (E --- 00, p = 0),

2. 3 1 5 4 6- !7[1

2.3 1 9 1.

b 1= -i+ + -z x +..., [11
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It is immediately apparent that as m - oc tht Rayleigh expansion for either a, or b,

does not converge even for small values of z. Hence, the requirement for small optical

size ImxI. The Thomson expansion, having no index dependency, applies only to infinite

optical size. The problem with the Rayleigh series mathematically arises from the terms

in a, with c2p and in b,, with y 2c. If these terms were set to zero, the divergence problem

would disappear. We must, however, recover the lost information without reintroducing the

divergence problem.

To do this rewrite a, to isolate the material properties as

=. - **~ [11]

Consider the result of letting ut -- 0 in the above expression (which will make all the (2P

terms zero along with others),

lim a, - .+ [12]
j-0 W(X) - { ('.(X)

To recover the full Mie coefficients, replace c in the above limit by

Vc_ ( n + 1) VnE,(, ) _E [131

and by symmetry,

../ji(n + 1) c- V' x)- .[4X=) u n . [14]

Both E,4 and Un can be considered as transformed material properties. Putting these new

variables back into [12] and expanding in small z. as if r,4 and 14,, were independent of z,
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we obtain,

SE ( -6E, +4) 4( _ 2_a,-Ix =i x• +

-2 (l + .2)2 9 E, +2

a T5 -g \2C2 + 3/ "

and again by symmetry,

b, = a,,, C,, U•,.

Note singularities occur if and only if

E. = -(n + 1)/n, [17]

and

U,, = -(n + 1)/n, [18]

which requires a real c (or real ii). For all other values of . and U the coefficients of series

[15] and [161 are finite to all orders of x. Thus [15] and [161 are valid for all nonreal values of

the refractive index. However, when the conditions [17] and [18] are nearly satisfied, many

terms in [15] and [16] will be required before the series converges to a given accuracy. For

convenience in computations we can rewrite 9, as,

2_F_ _- 3 c(1 + 3F) [19]

E,(z) (I+F)' 2+6F-Fz 2 "'1

with

F( z cot(z) - , and z = vfi-fix = (n - ik)x, [20]F~z) - z2
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and

U" = Eni i'( p

Since the 'Mie' coefficients for the normal incidence infinite cylinder (Ref. 2) are

identical to the sphere Mie coefficients, apart from the order of the Bessel functions involved,

the same procedure can be used to obtain a series for small particles independent of mate-

rial properties. Oblique incidence can also be done but generates much more complicated

expressions.

2.2 Spheroids

The above series [15] etc. by itself is interesting only from the classic nature of

the Rayleigh and Thomson series. However, the idea of transforming a Rayleigh-like series,

(with the optical size constraint) into a series that is independent of the material properties,

for many types of regular particle shapes, would be of practical use. We show here that this

can be achieved, to some approximation, with oriented and randomly oriented spheroids.

The Rayleigh approximation (with arbitrary yi) for oriented spheroids (Refs. 4 and

5), Qray, is given by

Qray = Qsca + Qabs, [211

where

Q 8 b4r2 sin= 2 + 174 (1 + cos20) (112 + I q, (22]
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Qab. =,lbRe{isnF2 (1 + cos 2 0) 1)

p t-2 (211 + TO) + 2 (7/2 + ,)2) 23 [123

and where

p = Výcos 2 0 + r 2 sin 2 0, a = 2iro/A, b = 27r3/A. [24]

Here r = a/b is the aspect ratio (for prolates r > I and for oblates r < 1), o is the length of

the semi-axis of rotation, 13 is the other semi-axis of the spheroid, 9 is the angle between the

incident radiation and the a (or a axis), and A is the wavelength of the scattered radiation.

Furthermore,
1 _ 1

T7 - 3(L 1 + --- ) and ii 3(L1 + -)' [25]

1 an 1 [26)3(L 2 + 2) and = 3(L 2 +

and the form factors are defined for prolates (i.e. r > 1) as

L, I12{ + •gIn +l--g~,[7

= •= '[27]

2= 1- L [28]
g2

r2=1~ [29]

For oblates (i.e. r < 1) we have

L1 + {1P tan- f} [30]

f2 1

P 1. [32]
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Normally, p 1 in the above equations ana hence 71' and YA are both zero, Th1 procedure.

as demonstrated for spheres, requires the full expression for the efliciencies, therefore %v

retain the p terms.

Since th scattered wave at large distances from finite convex bodies can be ap,)rox-

iniated by a series of kiccati-Bessel functions, we will use the same materia, transforms,

jt3] and [141, but with the arguments modified. Furthermore these transforms will be angle

independent to first order. This can be understood by considering that the tirst mode call

be excited ii any resonant phenomena without regard to the direction of the triggering

energy. This is re Adily verified by itsing an ,xact infinite cylinder sc.1ttering code.

The modification is simply an approximation to the effective optical size, .. of the

spheroid. We want a simple formula *hat will give the sphere material transform when

r = I and gives the emipirically derived asymptotes (of "/b) as either r - OC or r - 0. It

can be shown formally (Refs. 7 and 8) that the Y7, and q, ter--is come from different vector

spiberoidal wavefunctions. This implies that we will have, for either prolates or oblates. two

different expressions for T. Using the T-matrix method (Ref. 6) we have empirically derived

the following expressions:

vf-pib(I + v(1 - I/r 2 )) prolates
" for qj, and [331

V b oblates

Vr1ib(I + v'/ 3(i - 1/Vfr)) prolates )
5 / for '7 r.34]

V 'cli b ( v /'r v i o b la t e s f

where v ; v3/10.
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It is found, when [331 and [34? are used in the final formalism, the positions of tlhe

first two polaritons are well modelled from 0.1 < r < 20.

For randomly oriented spheroids the cross sections C..,, and (C?. must be integrated

over all angles. C,,. is just [22] multiplied by irpb2 and similarly for C'•6, from [231. The

efficiencies are then obtained, in the usual way, by normalizing the cross sections by the

average projected area. The integration is simple since 771, y/i, 2 and 172' are independent of

the orientation angle. Replacing c with Ej(T) and p with U1(T), integrating C.. and G'b 1

over sin(0) dO from 0 to r/2 and then normalizing we get

-~ 16b 4 r 2 -11

9 A

and

8 8br..
= ~Re (i[Fh + + ±2(FN + i@)J [36)

where the normalization factor is, for prolates,

A =1+ r sin, [37)

and for oblates,

A=1+ r2ln (+ VI [38]

and

1 1
3(Li(L -''-i -L) [39]

-1 1

= 3(L 2 + = 3(L 2 + [40]

Remember that in the expressions for E, and U1, [13] and [14], ,cyrx must be replaced by

T.
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3.0 RESULTS OF COMPARISON

In this chapter we will demonstrate the accuracy and utility of the expressions and

ideas in the preceding chapter. First, we will discuss the comparison of the Rayleigh [71,

Thomson [9] and our new series [15] with the exact Mie solution.

Figure 1 shows the three series normalized by the Mie calculation as a function of

size parameter. The series for Q,,, are calculated to fourth order in x and for a refractive

index of 500 - 500i which corresponds to metals in the millimeter wave region. When (nmxj

is small both the Rayleigh and the new series are excellent approximations. As expected

the Thomson series overestimates Qc, by 25%. The situation reverses when Imxt is very

large. Now the Rayleigh series underestimates Qc,, by 25%. Note, however, that in the

intermediate range of ImxI, [15] is still excellent.

The next figure, Fig. 2, shows, for the same index as above, the comparison of the

Mie solution of Q,_t with the new approximation and the Rayleigh series. Now the discrep-

ancies between Rayleigh and Mie are quite obvious. This large discrepancy is obviously due

to absorption (for more details, see Ref. 1, p. 292). This effect is well modelled by the new

series.

To show that [15] adequately models resonances we now choose an index with

a large real part and small imaginary or absorptive component. Figure 3 is a diagram of

Qexj as calculated by Mie theory and the new series [15] to fourth order, for an index of
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1.60 -'

"I 4th order m=500-500i

1.20 -

080 -----------

S-- - Rayleigh

0.40 ....... Thomson 1ý
-- New

C0 " 1" 0 " 0- 10 '

Size Parameter X

FIGURE 1 - Three series for Q,,, normalized by the Mie calculation, as a function
of size parameter. Refractive index m = 500 - 500i.

m=500-500i, Sphere

10 "
... '. Aporox.
--- ........ Rcyleignm

io -3 Excct Mie

10",

10

10" 10 -;10.7-10" 77:z 70" 70 0

Size Parameter X
FIGURE 2 - Qez as calculated by Mie theory, the new series 1151 and Rayleigh.

Refractive index m = 500 - 500i.
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Sphere, m=z00-10- 6i

b10 0

101ý

o:: ~. New Se'ýeS 4:-, Orce,

0.0! 0'
Size Parameter X

FIGURE 3 - Qext as calculated by Mie theory and the new series [15] for an index
of 100 - 10- 6 i.

400 Water 3.3 GHz Sphere
-•MieS- - 6th Order
-.. -. 4th Order

1.00 -,

S2.001

C-00 0.20 0.40 060
Size Parameter X

FIGURE 4 - Q,,t for water spheres at 3.3 GHz, Refractive index m =8.743 - 0.6409i.



UNCLASSIFIED
13

- Water 9.4 GHz Sphere

0 -i Mie
-- �86:h Order
- - - - 4t'l O',er

cj 2.00 -

.cr

000 020 Z,0 060
Size Parameter X

FIGURE 5 - Qt for water spheres at 9.4 GHz. Refractive index m = 8.075 - 1.824i,

Water 3.3 GHz, Aspect 2

4 o

----- , App-rox.

300-

I:• a

2000 2_~ \ ~ '

co 0 20 0.40 0 60
Semi-Minor Axis b

FIGURE 6 - Q,,z for water spheroids, r = 2, at 3.3 GHz. Refractive index in =
8.743 - 0.6409i.
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'00 Water 9.4 GHz, Aspect 2

300-

o 200 -

0 /7
.0 4 /

i ~ '-

0 2c 04C C06
Semi-Minor Axis b

FIGURE 7 - Qt for water spheroids, r = 2, at 9.4 GHz. Refractive index m =

8.075 - 1.824i.

100-10-6i. Although this index is extreme and not physical, it is used here to demonstrate

that [15] is still vabd for such unusual cases. This emphasizes that [15] applies to arbitrary

indices for small z. Notice that not all resonances are modelled. This is because the higher

order Mie coefficients, a, and b,, where n > 1, have not been used in this approximation of

Qe-zt.

The effect of using the sixth order expansion instead of the fourth order one can be

seen in Figs. 4 and 5. The cases are Qrt for water at 3.3 GHz and 9.4 GHz, respectively.

It can be seen that the sixth order corrects for both amplitude and skewness around the

resonances. Evidently, higher order expansion would improve the accuracy further. It is

interesting that the fourth order captures most of the detail, even around the resonances.
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Figures 6 and 7 are the same cases as for the previous two diagrams except that

prolate spheroids, with an aspect ratio 2, are considered instead of spheres. ['he exact

calculations are performed using the T-Matrix method (Ref. 6). Also the size parameter x

has been replaced by the semi-minor axis b. As expected, the features are similar but maniy

significant changes can be observed. Relative amplitudes and locations of the resonances

have changed as well as the underlying trend in the curves. The agreement, while ,iot

excellent, is still remarkable because of the simplicity of the series compared with the exact

calculation for such a large optical size. This large optical size almost makes the T-matrix

ill-conditioned. No such problem occurs for the series.

Figures 8 and 9 are similar to Figs. 6 and 7 but now oblate spheroids of aspect 0.5

are considered. The results are similar to the prolate cases for both Qer and the degree of

agreement between the T-Matrix calculation and our approximation.

Figure 10 is a comparison between the approximation, T-Matrix and the classical

Rayleigh. It consists of a calculation of Qet from a 1.5 aspect ratio, randomly oriented,

amorphous carbon, prolate spheroid, at 94 GHz. This could be potentially a part of a model

for millimeter-wave propagation through a soot plume. Since both the real and imaginary

part of the refractive index (m = 50 - 50i) is very high, the T-Matrix calculation could be

unreliable. Indeed, for higher values of b the T-Matrix code will produce negative values of

QeXt. Up to about b = 0.2 the code is accurate enough for our purposes since the backscatter

efficiency and absorption efficiency behave as expected up to this point (when compared
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Water 3.3 GHz, Aspect 5

-7-Vctr K
4 - -- Aoprox.
I

300 -.

X

Q) 2 00
Cv I .4

020 . 0 8:

4 ~/

3 C0 "•''0..... ' ~ .... 8. . ,

Semi-Major Axis b

FIGURE 8 - Qez, for water spheroids, r = 0.5, at 3.3 GHz. Refractive index m =
8.743 - 0.6409i.

400- Water 9.4 GHz, Aspect .5

.00

,00

//

010 0,20 040 o60 080
Semi-Major Axis b

FIGURE 9 - Q,_, for water spheroids, r = 0.5, at 9.4 GHz. Refractive index m =
8.075 - 1.824i.
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Amorphous Carbon 94 GHz. Aspect 1 5

I - - - AZprOX

008 . cyleigrl

0 Ge
S 1 "-

X

0 04

oo, ,/

000 C0 0 20 o 3Semi-Minor Axis b

FIGURE 10 - Qei for amorphous carbon, r = 1.5, at 94 GHz. Refractive index
m = 50 - 50i.

with equivalent volume spheres). It is known that these two efficiencies are more sensitive

to numerical instabilities than the extinction efficiency. Keeping this in mind, the new

approximation agrees with the T-Matrix calculation to a substantial degree while the classic

Rayleigh series does not. This is mainly due to the inclusion of the magnetic dipole terms.

The next example is a model of extinction by randomly oriented copper flakes in

the infrared (m = 35 - 35i). An oblate spheroid with an aspect ratio of 0.333 was used. For

this index, lower aspect ratios could not be considered since the T-Matrix will not produce

usable results and hence no comparison could be made. Qet for this case is shown in Fig.

11. Again, caution is required since the T-Matrix for b > .25 begins to decrease rapidly

and will go negative, as in the previous case. Again, as in the previous figure, the new
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approximation is correct in both form and magnitude as opposed to the Rayleigh series.

As a final example we will use the high-temperature superconductor Ylia 2 (?u30,-_

at 77 K. For this material and temperature the refractive index can be computed from the

model presented in Ref. 9. At 10 GHz we calculate m = 1.2-17683i. The next three figures.

Figs. 12-14, show Q,,t for a sphere, an aspect ratio 10 prolate spheroid and an aspect ratio

0.1 oblate spheroid, respectively. As usual, the spheroids are randomnly oriented. In the

case of the sphere the exact Mie calculation is given. For the spheroids, no exact solution is

known. The large deviations from the Rayleigh in all three cases is, as in Fig. 2, ascribable

to absorption. Notice that for the largest x shown, Qet is close to the value predicted by

the Rayleigh series. Although it is not clear from these diagrams, Q t, becomes equal to

the Rayleigh series, for this range of x, as the eccentricity goes to 1. This is readily seen

from [39] and [40] since as e -- 1, L, --+ 0 (prolates) or L2 - 0 (oblates) and 61 -* oo and

U1 --+ 0. Thus the electric dipole term dominates the magnetic term. "'his dominance is

the weakest in the case of spheres in which the electric dipole term is only four times the

value of the magnetic term (see Fig. 1).

It is evident from the above calculations that it is possible to obtain series for the

efficiencies without consideration of optical size, for spheres, spheroids and infinite cylinders.

The accuracy of the series for the spheroid would improve if the correct expressions for the

spheroidal "Mie" coefficients were used. However, the required spheroidal wave functions



UN CLASSIFIED
19

Copper, Infrared, Aspect 0 333
010"11

Aoprox 7
--------- Rcyle g -

04-

4r I

0 C2

0021

0CO c '0 020 C 30

Semi-Major Axis b

FIGURE 11 - Qv for copper oblate spheroids, r = 0.333, in the infrared. Refractive

index m = 35 - 35i.

High T. YBCO, 10 GHz, Sphere

10 -1 . .. Approx.
.. ........ Rayleigh

10- Exact Mie

.,J 10•

a.) lo

10 "

10-"

10 -

10 -4 10 - 10 ý- 1 0 1,t 1O* 10 " 10 ": 10 "

Size Parameter X

FIGURE 12 - Q., for spheres of YBa 2 Cu3 O7 -_ at 77*K, r = 1, at 10 GHz. Refrac-

tive index m = 1.2 - 17683i.
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High T, fBCO, 10 GHz. Aspect 10

10 ~ - -Apprcx. -

'II
----1ji-- Roy-e/ gh

Semi-Minor Axis b

FIGURE 13 - Qezit for spheroids of YBa 2CU3O 7... 6 at 77*K, r 10, at 10 GHz.
Refractive index m = 1.2 - 17683i.

High T. YBCO, 10 GHz, Aspect A1

- - - App~ox,

10

.)

/

I 0 ,/

101

- '.10""

Semi-Major Axis b

FIGURE 14 - Qez for spheroids of YBa 2 CU330 7 -_ at 77°K, r = 0.1, at 10 GHz.
Refractive index m = 1.2 - 17683i.
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would lead to complex expressions for C,, and 14,. Siiall-particle phase ful'ctior&• carl albo

be computed for arbitrary indices by using the same material transforrmed series,

4.0 CONCLUSIONS AND REMARSX

We have derived a series that removes the optical size constraint that is inherenti in

both the Rayleigh and Thomson approximations. This series has been applied to spheres

and, in an approximate way, to spheroids. Comparison of the new series with the exact Mie

formalism shows excellent agreement. A similar comparison between the T-Matrix method

and the randomly oriented spheroid series shows that the agreement is not as good as in

the case for spheres. However, a substantial portion of the underlying structure, and hence

physics, is being modelled correctly.

Combining this approach with our previously described techniques (Refs. 5 and

10) for approximating extinction, scattering Pnd absorption efficiencies, we have obtained

simple formulae for arbitrary materials, particle sizes and aspect ratios. For the first time,

estimations of the extinction efficiency for small, highly refractive, elongated, spheroidal

particles can be obtained. Since the phase function for small particles is simply related

to the first scattering terms, it can also now be obtained for cases that were previously

intractable. This gives us the capability to model realistic modern battlefield obscurants as

well as radar propagation through rain.
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